38 research outputs found

    Greenhouse cover management: solar radiation effects on production and quality of a gerbera crop

    Get PDF
    Este trabalho propôs avaliar a influência das malhas de sombreamento (termorrefletora) instaladas externa e internamente em ambiente protegido coberto com polietileno de baixa densidade (PEBD), cultivado com gérbera, na radiação solar global (Qg) e nos parâmetros da planta: crescimento, desenvolvimento e qualidade da gérbera. O experimento foi conduzido em dois ciclos no ano de 2004, na ESALQ/USP, em Piracicaba, SP, em ambiente protegido, dividido em dois módulos de produção. Os ambientes foram diferenciados um do outro pela instalação da malha termorrefletora (50%): malha externa (ambiente 1 - A1) e malha interna (ambiente 2 - A2). Nesses ambientes, os resultados dos dois ciclos mostraram alteração na Qg; nos ambientes A1 e A2 as Qg foram respectivamente 33,6 e 21,7 (1º ciclo) e 27,2 e 17,9% (2º ciclo) em relação à observada externamente. Considerando-se os dois ciclos conclui-se que os resultados indicaram que não houve diferenças na qualidade das plantas nos dois ambientes, mas, analisando-se separadamente os dois ciclos da cultura, o A1 (malha externa) foi o que mais favoreceu a qualidade das plantas de gérbera e somente as gérberas presentes no A1 (malha externa) atenderam às exigências mercadológicas, quanto aos números de botões florais.The objective of this study was to evaluate the influence of low density polyethylene (PEBD) as a greenhouse cover in association with thermal shading screen installed in two different positions (outside and inside), cultivated with gerbera, on solar radiation (Qg), as well as on the growth and quality of gerbera plants. The experiment was carried out during two crop cycles in 2004, at ESALQ/USP, in Piracicaba, State of São Paulo, Brasil. A greenhouse was sub-divided into two parts and covered with PEBD differing from each other by the position of the thermal shading screen (50%), witch was installed inside (at 3 m height) and outside (covering the plastic cover). The environment with the thermal screen outside was named A1 and the other one with the thermal screen inside was named A2. The results from the two crop cycles showed that the microclimate was changed by the covers of the greenhouses. Qg inside for A1 and A2 were respectively 33.6 and 21.7 (first cycle), and 27.2 and 17.9% (second cycle) of the values measured outside. Considering the two crop cycles, the results showed that there were no differences in plant quality in both environments. However, A1 was the most favorable environment for plant quality when considering the two crop cycles, separately the results separately. Also, only gerberas from A1 showed themselves to have marketable characteristics

    Variabilidade espacial da duração do período de molhamento em vinhedo de 'Niagara Rosada'

    Get PDF
    Despite considerable efforts to develop accurate electronic sensors to measure leaf wetness duration (LWD), little attention has been given to studies about how is LWD variability in different positions of the crop canopy. In order to evaluate the influence of 'Niagara Rosada' (Vitis labrusca) grapevine structure on the spatial variability of LWD, the objective of this study was to determine the canopy position of the ‘Niagara RosadaÂ’ table grape with longer LWD and its correlation with measured standard LWD over turfgrass. LWD was measured in four different canopy positions of the vineyard (sensors deployed at 45º with the horizontal): at the top of the plants, with sensors facing southwest and northeast (Top-SW and Top-NE), and at the grape bunches height, with sensors facing southwest and northeast (Bottom-SW and Bottom-NE). No significant difference was observed between the top (1.6 m) and the bottom (1.0 m) of the canopy and also between the southwest and northeast face of the plants. The relationship between standard LWD over turfgrass and crop LWD in different positions of the grape canopy showed a define correlation, with R² ranging from 0.86 to 0.89 for all period, from 0.72 to 0.77 for days without rain, and from 0.89 to 0.91 for days with rain.Apesar dos esforços consideráveis para se desenvolverem sensores eletrônicos acurados para medir a duração do período de molhamento (DPM), pouca atenção tem sido dada às pesquisas sobre a variabilidade da DPM no interior do dossel das culturas. A fim de avaliar a influência da estrutura da cobertura vegetal da videira 'Niagara Rosada' (Vitis labrusca) na variabilidade espacial da DPM, o objetivo do presente estudo foi determinar a posição da videira com a maior DPM e sua relação com a DPM medida em condição-padrão (no gramado). Para tanto, a DPM foi medida em quatro diferentes posições da planta, com os sensores inclinados em 45º em relação à horizontal: topo da planta com a face superior do sensor voltada para sudoeste e nordeste (Topo-SW e Topo-NE) e altura dos cachos de uva com a face superior do sensor voltada para sudoeste e nordeste (Dossel-SW e Dossel-NE). Não houve diferença significativa da DPM tanto entre a parte mais alta (1,6 m) e a parte mais baixa (1,0 m) da planta, como entre as faces sudoeste e nordeste das plantas. As relações entre os dados de DPM sobre o gramado e nas diversas posições da cobertura vegetal, obtidas por meio de regressão linear simples, apresentaram correlações bem definidas, com valores de R² variando de 0,86 a 0,89 para todo o período, de 0,72 a 0,77 para os dias sem chuva e de 0,89 a 0,91 para os dias com chuva.FAPES

    Assessing Biogeography of Coffee Rust Risk in Brazil as Affected by the El Niño Southern Oscillation

    Get PDF
    The El Niño Southern Oscillation (ENSO) is an oceanic-atmospheric phenomenon influencing worldwide weather and climate. Its occurrence is determined by the sea surface temperature (SST) anomaly of the 3.4 Niño region in the Pacific Ocean (5°N-5°S, 120°-170°W). El Niño (EN), Neutral (NT), and La Niña (LN) are the three possible phases of ENSO, respectively for warm, normal, and cold SST anomaly. As in other regions around the world, weather in Brazil is influenced by ENSO phases. The country is the major coffee producer in the world and production is strongly influenced by weather conditions, which affect plant yield, harvest quality, and interactions with pests and diseases. Coffee leaf rust (CLR), caused by the fungus Hemileia vastatrix, is a major cause of coffee yield and quality losses in Brazil, and requires fungicide spray applications every season. Because CLR is highly influenced by weather conditions, it is possible to use weather variables to simulate its progress during the cropping cycle. Therefore, the aims of this study were to estimate CLR infection rate based on a validated empirical model, which has daily minimum air temperature and relative humidity as inputs, and to assess the extent of ENSO influence on the annual risk of this disease at 45 sites in Brazil. Cumulative infection rates (CIR) were estimated daily from October to June of each growing season and location, based on the prevailing ENSO phase. Differences between the extreme phases (EN-LN), were assessed by the Two-One-Sided-Tests (TOST) method. Analysis of data from eight sites, located mainly in Paraná state, provided evidence of CIR differences between EN and LN phases (G1). Evidence of no difference of CIR between EN and LN was found in 18 sites (G2), whereas 19 sites showed no evidence of differences (G3), due to relatively large variation of CIR within the same ENSO phase. The G1 sites are located mostly in Southern Brazil, where ENSO exerts a well-defined influence on rainfall regime. In contrast, the G2 sites are mainly in Minas Gerais state, which is characterized as a transition region for ENSO influence on rainfall. The G3 sites are located between the northern region of Minas Gerais state and southern region of Bahia state, which is characterized by a sub-humid climate that is usually very dry during winter, and where rainfall can vary up to 300% from one year to another, influencing relative humidity and resulting in a high CIR variability. Therefore, ENSO had a well-defined influence on CIR only in Paraná state, a region with minor importance for coffee production in Brazil. No ENSO influence was found in more northerly zones where the majority of Brazilian coffee is produced. This is the first evidence of ENSO-linked regional impact on the risk of coffee rust

    Obtenção de dados meteorológicos para sistemas de alerta fitossanitário: o caso da duração do período de molhamento foliar

    Get PDF
    Disease-warning systems are decision support tools designed to help growers determine when to apply control measures to suppress crop diseases. Weather data are nearly ubiquitous inputs to warning systems. This contribution reviews ways in which weather data are gathered for use as inputs to disease-warning systems, and the associated logistical challenges. Grower-operated weather monitoring is contrasted with obtaining data from networks of weather stations, and the advantages and disadvantages of measuring vs. estimating weather data are discussed. Special emphasis is given to leaf wetness duration (LWD), not only because LWD data are inputs to many disease-warning systems but also because accurate data are uniquely challenging to obtain. It is concluded that there is no single best method to acquire weather data for use in disease-warning systems; instead, local, regional, and national circumstances are likely to influence which strategy is most successful.Os sistemas de alerta fitossanitário são ferramentas de suporte à decisão desenvolvidos para ajudar os agricultures a determinar o melhor momento da aplicação das medidas de controle para combater as doenças de plantas. As variáveis meteorológicas são dados de entrada quase que obrigatórios desses sistemas. Este trabalho apresenta uma revisão sobre os meios pelos quais as variáveis meteorológicas são coletadas para serem usadas como dados de entrada em sistemas de alerta fitossanitário e sobre os desafios associados à logística de obtenção desses dados. Essa revisão compara o monitoramento meteorológico ao nível do produtor, nas propriedades agrícolas, com aquele feito ao nível de redes de estações meteorológicas, assim como discute as vantagens e desvantagens entre medir e estimar tais variáveis meteorológicas. Especial ênfase é dada à duração do período de molhamento foliar (DPM), não somente pela sua importância como dado de entrada em diversos sistemas de alerta fitossanitário, mas também pelo desafio de se obter dados acurados dessa variável. Pode-se concluir, após ampla discussão do assunto, que não há um método único e melhor para se obter os dados meteorológicos para uso em sistemas de alerta fitossanitário; por outro lado, as circunstâncias a nível local, regional e nacional provavelmente influenciam a estratégia de maior sucesso

    The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts

    Get PDF
    To effectively meet growing food demands, the global agronomic community will require a better understanding of factors that are currently limiting crop yields and where production can be viably expanded with minimal environmental consequences. Remote sensing can inform these analyses, providing valuable spatiotemporal information about yield-limiting moisture conditions and crop response under current climate conditions. In this paper we study correlations for the period 2003-2013 between yield estimates for major crops grown in Brazil and the Evaporative Stress Index (ESI) - an indicator of agricultural drought that describes anomalies in the actual/reference evapotranspiration (ET) ratio, retrieved using remotely sensed inputs of land surface temperature (LST) and leaf area index (LAI). The strength and timing of peak ESI-yield correlations are compared with results using remotely sensed anomalies in water supply (rainfall from the Tropical Rainfall Mapping Mission; TRMM) and biomass accumulation (LAI from the Moderate Resolution Imaging Spectroradiometer; MODIS). Correlation patterns were generally similar between all indices, both spatially and temporally, with the strongest correlations found in the south and northeast where severe flash droughts have occurred over the past decade, and where yield variability was the highest. Peak correlations tended to occur during sensitive crop growth stages. At the state scale, the ESI provided higher yield correlations for most crops and regions in comparison with TRMM and LAI anomalies. Using finer scale yield estimates reported at the municipality level, ESI correlations with soybean yields peaked higher and earlier by 10 to 25 days in comparison to TRMM and LAI, respectively. In most states, TRMM peak correlations were marginally higher on average with municipality-level annual corn yield estimates, although these estimates do not distinguish between primary and late season harvests. A notable exception occurred in the northeastern state of Bahia, where the ESI better captured effects of rapid cycling of moisture conditions on corn yields during a series of flash drought events. The results demonstrate that for monitoring agricultural drought in Brazil, value is added by combining LAI with LST indicators within a physically based model of crop water use. Published by Elsevier Inc.Embrapa Visiting Scientist Program ; Labex US, an international scientific cooperation program - Brazilian Agricultural Research Corporation - Embrapa, ; United States Department of Agriculture (USDA

    Vineyard microclimate and yield under different plastic covers.

    Get PDF
    The use of plastic cover in vineyards minimizes effects of adverse weather conditions. The northwest of São Paulo State is one of the largest grape producing regions in Brazil; however, few studies investigate the effects of different plastic covers on vineyards in this region. This study compared the effect of black shading screen (BSS) and braided polypropylene film (BPF) on BRS Morena vineyard microclimate, grown on an overhead trellis system in the northwestern São Paulo. The experiments were carried out during three growing seasons (2012 ? 2014). BSS allowed superior incoming solar radiation (SR) transmissivity, resulting in higher net radiation (Rn), and higher ratio between photosynthetically active (PAR) and SR. No differences were observed between the average air temperatures (T) and relative humidity (RH) of covered environments (BPF and BSS) and outside condition (automatic weather station ? AWS), due to high air circulation, despite wind speed (WS) reduction caused by plastic covers. BPF provided better conditions for vineyard growth with higher fruit yield than vineyard under BSS regarding the number of shoots with bunches per plant, bunch and stem weights, longitudinal diameter of berries, quantity of fertile buds per shoot, and yield per shoot and per plant. BPF covers also influenced leaf size and growth speed of plants in vineyards. Keywords Black shading screen . Braided polypropylene film . BRS Morena . Leaf wetness duration . Yiel

    New agroclimatic approach for soybean sowing dates recommendation: A case study

    No full text
    The objective of this study was to introduce a new approach to recommend sowing dates for soybean crop in Brazil, considering the climatic conditions and crop yield. The first step was to define the periods when air temperature is smaller than 40 °C and greater than 1 °C in at least 80% of the years, and with at least 60% of relative crop evapotranspiration during the establishment phase in more than 50% of the years. The actual yield of crop was estimated by FAO Agroecological zone model for the suitable sowing dates. Based on that, when actual yield overcome the production cost in more than 80% of years and mean air temperature along the cycle is between 20 and 30 °C, the sowing date is classified as suitable, but if actual yield overcome the production cost only between 60 and 80% of the years or mean air temperature is not between 20 and 30 °C, the date is classified as marginal. Sowing dates are considered as unsuitable if actual crop yield overcome the production cost in less than 60% of the years. The new approach was applied, as case studies, for Cruz Alta, RS, Jataí, GO, and Balsas, MA, in order to compare it with the agroclimatic zoning approach presently used in Brazil. The new procedures can generate more accurate information to support sowing dates recommendation for soybean, minimizing yield losses from climatic risk
    corecore